Copied to
clipboard

G = C42.213C23order 128 = 27

74th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.213C23, Q8⋊C819C2, D4⋊C8.9C2, C4⋊C4.35D4, C42Q165C2, C83Q813C2, (C2×D4).55D4, (C2×Q8).53D4, C4.61(C4○D8), C4.10D83C2, C4⋊C8.16C22, D4⋊Q8.3C2, C4⋊Q8.33C22, C4.40(C8⋊C22), (C4×C8).246C22, (C4×D4).41C22, (C4×Q8).41C22, C2.25(D4⋊D4), C4.68(C8.C22), C22.179C22≀C2, C2.25(D4.7D4), C2.17(D4.10D4), C22.50C24.3C2, (C2×C4).970(C2×D4), SmallGroup(128,384)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C42.213C23
C1C2C22C2×C4C42C4×Q8C22.50C24 — C42.213C23
C1C22C42 — C42.213C23
C1C22C42 — C42.213C23
C1C22C22C42 — C42.213C23

Generators and relations for C42.213C23
 G = < a,b,c,d,e | a4=b4=1, c2=b2, d2=a2b2, e2=a2, ab=ba, cac-1=dad-1=a-1, eae-1=ab2, cbc-1=dbd-1=ebe-1=b-1, dcd-1=ac, ece-1=bc, de=ed >

Subgroups: 216 in 100 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, Q16, C22×C4, C2×D4, C2×Q8, C2×Q8, C4×C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C42⋊C2, C4×D4, C4×Q8, C4×Q8, C22⋊Q8, C4.4D4, C422C2, C4⋊Q8, C2×Q16, D4⋊C8, Q8⋊C8, C4.10D8, C42Q16, D4⋊Q8, C83Q8, C22.50C24, C42.213C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, C4○D8, C8⋊C22, C8.C22, D4⋊D4, D4.7D4, D4.10D4, C42.213C23

Character table of C42.213C23

 class 12A2B2C2D4A4B4C4D4E4F4G4H4I4J4K4L4M8A8B8C8D8E8F8G8H
 size 111182222444448881644448888
ρ111111111111111111111111111    trivial
ρ211111111111111111-1-1-1-1-1-1-1-1-1    linear of order 2
ρ31111111111-111-1-1-1-1-111111-11-1    linear of order 2
ρ41111111111-111-1-1-1-11-1-1-1-1-11-11    linear of order 2
ρ51111-11111-11-111-11-11-1-1-1-11-11-1    linear of order 2
ρ61111-11111-11-111-11-1-11111-11-11    linear of order 2
ρ71111-11111-1-1-11-11-11-1-1-1-1-11111    linear of order 2
ρ81111-11111-1-1-11-11-1111111-1-1-1-1    linear of order 2
ρ922220-2-2-2-20002020-2000000000    orthogonal lifted from D4
ρ1022220-2-2-2-200020-202000000000    orthogonal lifted from D4
ρ1122220-22-22020-220-20000000000    orthogonal lifted from D4
ρ1222220-22-220-20-2-2020000000000    orthogonal lifted from D4
ρ13222222-22-2-20-2-20000000000000    orthogonal lifted from D4
ρ142222-22-22-2202-20000000000000    orthogonal lifted from D4
ρ152-22-20020-202i00-2i0000-2--2--2-20-202    complex lifted from C4○D8
ρ1622-2-2020-202i0-2i000000--2--2-2-2-2020    complex lifted from C4○D8
ρ1722-2-2020-20-2i02i000000--2--2-2-220-20    complex lifted from C4○D8
ρ182-22-20020-20-2i002i0000--2-2-2--20-202    complex lifted from C4○D8
ρ1922-2-2020-20-2i02i000000-2-2--2--2-2020    complex lifted from C4○D8
ρ2022-2-2020-202i0-2i000000-2-2--2--220-20    complex lifted from C4○D8
ρ212-22-20020-202i00-2i0000--2-2-2--2020-2    complex lifted from C4○D8
ρ222-22-20020-20-2i002i0000-2--2--2-2020-2    complex lifted from C4○D8
ρ234-44-400-40400000000000000000    orthogonal lifted from C8⋊C22
ρ244-4-44000000000000002-22-20000    symplectic lifted from D4.10D4, Schur index 2
ρ254-4-4400000000000000-22-220000    symplectic lifted from D4.10D4, Schur index 2
ρ2644-4-40-404000000000000000000    symplectic lifted from C8.C22, Schur index 2

Smallest permutation representation of C42.213C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 18 15 5)(2 19 16 6)(3 20 13 7)(4 17 14 8)(9 62 56 59)(10 63 53 60)(11 64 54 57)(12 61 55 58)(21 31 33 26)(22 32 34 27)(23 29 35 28)(24 30 36 25)(37 48 49 44)(38 45 50 41)(39 46 51 42)(40 47 52 43)
(1 45 15 41)(2 48 16 44)(3 47 13 43)(4 46 14 42)(5 50 18 38)(6 49 19 37)(7 52 20 40)(8 51 17 39)(9 36 56 24)(10 35 53 23)(11 34 54 22)(12 33 55 21)(25 62 30 59)(26 61 31 58)(27 64 32 57)(28 63 29 60)
(1 25 13 32)(2 28 14 31)(3 27 15 30)(4 26 16 29)(5 24 20 34)(6 23 17 33)(7 22 18 36)(8 21 19 35)(9 39 54 49)(10 38 55 52)(11 37 56 51)(12 40 53 50)(41 58 47 63)(42 57 48 62)(43 60 45 61)(44 59 46 64)
(1 29 3 31)(2 25 4 27)(5 35 7 33)(6 24 8 22)(9 46 11 48)(10 43 12 41)(13 26 15 28)(14 32 16 30)(17 34 19 36)(18 23 20 21)(37 62 39 64)(38 60 40 58)(42 54 44 56)(45 53 47 55)(49 59 51 57)(50 63 52 61)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,15,5)(2,19,16,6)(3,20,13,7)(4,17,14,8)(9,62,56,59)(10,63,53,60)(11,64,54,57)(12,61,55,58)(21,31,33,26)(22,32,34,27)(23,29,35,28)(24,30,36,25)(37,48,49,44)(38,45,50,41)(39,46,51,42)(40,47,52,43), (1,45,15,41)(2,48,16,44)(3,47,13,43)(4,46,14,42)(5,50,18,38)(6,49,19,37)(7,52,20,40)(8,51,17,39)(9,36,56,24)(10,35,53,23)(11,34,54,22)(12,33,55,21)(25,62,30,59)(26,61,31,58)(27,64,32,57)(28,63,29,60), (1,25,13,32)(2,28,14,31)(3,27,15,30)(4,26,16,29)(5,24,20,34)(6,23,17,33)(7,22,18,36)(8,21,19,35)(9,39,54,49)(10,38,55,52)(11,37,56,51)(12,40,53,50)(41,58,47,63)(42,57,48,62)(43,60,45,61)(44,59,46,64), (1,29,3,31)(2,25,4,27)(5,35,7,33)(6,24,8,22)(9,46,11,48)(10,43,12,41)(13,26,15,28)(14,32,16,30)(17,34,19,36)(18,23,20,21)(37,62,39,64)(38,60,40,58)(42,54,44,56)(45,53,47,55)(49,59,51,57)(50,63,52,61)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,15,5)(2,19,16,6)(3,20,13,7)(4,17,14,8)(9,62,56,59)(10,63,53,60)(11,64,54,57)(12,61,55,58)(21,31,33,26)(22,32,34,27)(23,29,35,28)(24,30,36,25)(37,48,49,44)(38,45,50,41)(39,46,51,42)(40,47,52,43), (1,45,15,41)(2,48,16,44)(3,47,13,43)(4,46,14,42)(5,50,18,38)(6,49,19,37)(7,52,20,40)(8,51,17,39)(9,36,56,24)(10,35,53,23)(11,34,54,22)(12,33,55,21)(25,62,30,59)(26,61,31,58)(27,64,32,57)(28,63,29,60), (1,25,13,32)(2,28,14,31)(3,27,15,30)(4,26,16,29)(5,24,20,34)(6,23,17,33)(7,22,18,36)(8,21,19,35)(9,39,54,49)(10,38,55,52)(11,37,56,51)(12,40,53,50)(41,58,47,63)(42,57,48,62)(43,60,45,61)(44,59,46,64), (1,29,3,31)(2,25,4,27)(5,35,7,33)(6,24,8,22)(9,46,11,48)(10,43,12,41)(13,26,15,28)(14,32,16,30)(17,34,19,36)(18,23,20,21)(37,62,39,64)(38,60,40,58)(42,54,44,56)(45,53,47,55)(49,59,51,57)(50,63,52,61) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,18,15,5),(2,19,16,6),(3,20,13,7),(4,17,14,8),(9,62,56,59),(10,63,53,60),(11,64,54,57),(12,61,55,58),(21,31,33,26),(22,32,34,27),(23,29,35,28),(24,30,36,25),(37,48,49,44),(38,45,50,41),(39,46,51,42),(40,47,52,43)], [(1,45,15,41),(2,48,16,44),(3,47,13,43),(4,46,14,42),(5,50,18,38),(6,49,19,37),(7,52,20,40),(8,51,17,39),(9,36,56,24),(10,35,53,23),(11,34,54,22),(12,33,55,21),(25,62,30,59),(26,61,31,58),(27,64,32,57),(28,63,29,60)], [(1,25,13,32),(2,28,14,31),(3,27,15,30),(4,26,16,29),(5,24,20,34),(6,23,17,33),(7,22,18,36),(8,21,19,35),(9,39,54,49),(10,38,55,52),(11,37,56,51),(12,40,53,50),(41,58,47,63),(42,57,48,62),(43,60,45,61),(44,59,46,64)], [(1,29,3,31),(2,25,4,27),(5,35,7,33),(6,24,8,22),(9,46,11,48),(10,43,12,41),(13,26,15,28),(14,32,16,30),(17,34,19,36),(18,23,20,21),(37,62,39,64),(38,60,40,58),(42,54,44,56),(45,53,47,55),(49,59,51,57),(50,63,52,61)]])

Matrix representation of C42.213C23 in GL4(𝔽17) generated by

161500
1100
0040
00913
,
1000
0100
0040
00913
,
0600
3000
001313
0004
,
13900
0400
0099
00108
,
13000
01300
001515
00112
G:=sub<GL(4,GF(17))| [16,1,0,0,15,1,0,0,0,0,4,9,0,0,0,13],[1,0,0,0,0,1,0,0,0,0,4,9,0,0,0,13],[0,3,0,0,6,0,0,0,0,0,13,0,0,0,13,4],[13,0,0,0,9,4,0,0,0,0,9,10,0,0,9,8],[13,0,0,0,0,13,0,0,0,0,15,11,0,0,15,2] >;

C42.213C23 in GAP, Magma, Sage, TeX

C_4^2._{213}C_2^3
% in TeX

G:=Group("C4^2.213C2^3");
// GroupNames label

G:=SmallGroup(128,384);
// by ID

G=gap.SmallGroup(128,384);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,680,422,184,1123,570,521,136,2804,1411,718,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=b^2,d^2=a^2*b^2,e^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,e*a*e^-1=a*b^2,c*b*c^-1=d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=a*c,e*c*e^-1=b*c,d*e=e*d>;
// generators/relations

Export

Character table of C42.213C23 in TeX

׿
×
𝔽